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Abstract-The tube in flow rigs used for  testing Doppler ultra-
sound instruments can attenuate and distor t the beam and sam-
ple volume by refraction, reflection, absorption and mode con-
version. The attenuation and degree of distor tion has been 
measured by using a moving str ing test object and candidate 
tubes have been compared. Tubes of rubber, TFE-Teflon, Per-
spex, heatshrink and C-Flex have been tested leading to the 
choice of 0.8mm wall C-Flex.  
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I. INTRODUCTION 

Doppler ultrasound devices are routinely used for the assess-
ment of  flow characteristics in patients and for clinical re-
search. They can take the form of  a stand-alone instrument 
or be incorporated into an ultrasound scanner and can be ei-
ther continuous wave (CW) – sensitive to flow within the 
region of overlap of the beams of  transmitter and receiver 
transducers - or pulsed wave (PW) – sensitive to flow within 
a sample volume defined by the beam width, transmitted 
pulse duration and received signal gating.  Testing these de-
vices as part of a quality control programme is normally car-
ried out by the use of moving string test objects, which simu-
late single streamlines and can be used to determine spatial 
resolution (eg. beam width, sample volume size) and flow 
test objects which simulate flow in a blood vessel [1].  The 
general form of a flow test object is a flow channel within a 
tissue mimicking material (TMM) having an ultrasound  
propagation speed,  absorption and scattering characteristics 
typical of soft tissue. A blood-mimicking fluid (BMF) having 
an ultrasound  propagation speed,  absorption and scattering 
characteristics similar to blood flows steadily through the 
channel from an upper to a lower reservoir or under the ac-
tion of a pulsatile pump (Fig. 1).  
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Fig. 1. Flow test object. TMM – Tissue mimicking medium; BMF – Blood 
mimicking fluid. 

       The TMM is normally gelatine or agar based and al-
though tubeless test objects have been built and their geomet-
ric stability over periods up to four days studied [2,3], their 
long-term stability is unknown and thus it is usual for the 
flow channel to be the lumen of a tube separating BMF and 
TMM. This tube, usually made from a plastic or rubber, will 
have acoustic characteristics different from BMF and TMM 
and can distort the instrument’s beam and sample volume [4-
6]. A different ultrasound propagation speed g
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Fig. 3. Effect of mode conversion at wall of hard tube. 
 

II. METHOD 

      The effect of different wall material and thickness has 
been assessed by measuring the sensitivity variation within 
the beam of a 4MHz continuous wave Doppler instrument 
using a string phantom with and without a tube present.  The 
relative positions of the Doppler instrument probe, tube and 
moving string  are shown in Fig. 4.  
The string and tube are within a water bath and the section of 
tube is mounted in the test-rig such that it can be moved 
along the string to allow measurements without the tube be-
ing in the beam path.  
For the measurements reported here the beam/vessel angle 
was 62.5o and the string (1mm rubber O-ring) speed was 
0.6ms-1. All measurements were made with the string on the 
horizontal mid-line of the tube and running parallel to the 
tube axis. 
       In practice it was found to be more convenient to keep 
the string in a fixed position and, by means of micro-
manipulators, to move the Doppler probe and tube together 
during a measurement.  The Doppler signal from the CW 
instrument together with tube and probe position signals from  
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Fig. 4. Measurement of  beam sensitivity variation within a tube. 
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Fig. 5. View looking along axis of tube showing relative positions of probe, 
tube and string for measuring beam sensitivity variation with the beam axis 
passing  through the tube axis (left) and laterally displaced (right). 

 
potentiometers coupled to the micro-manipulators were sam-
pled and stored using a data logger coupled to a PC.   Plots of 
the Doppler signal power averaged for 1s versus string posi-
tion relative to the beam axis were generated with and with-
out the tube in the beam, for different tubes and with the 
Doppler beam passing through the tube axis and at number of 
positions displaced horizontally from the tube axis as illus-
trated in figure 5.  
     Both the insertion loss (reduction in Doppler signal power 
resulting from the presence of the tube) and the variation of 
this loss across the tube are of interest. The latter is important 
since it is a measure of the degree to which the ultrasound 
beam has been distorted. In order to assess this more easily, 
the ratio of the powers at each string position with and with-
out the tube were calculated and plotted to show the frac-
tional change in signal power versus string position.  Meas-
urements have been made on the tubes shown in the first col-
umn of table 1. 
 

III. RESULTS AND DISCUSSION 

 Sample graphical results [6] for 8mm ID/1.6mm wall C-Flex 
are shown in Figs. 6 and 7.  Doppler power versus string po-
sition for four beam axis positions across the tube is shown  
in Fig. 6. The ratio of power measured with the tube in place 
to that measured without for the cases shown in Fig. 6(a) and 
(d) is plotted in Fig. 7. These plots have been normalised to a 
maximum of unity. The insertion losses, with the beam pass-
ing through the tube axis and with the beam displaced by 
0.67 of the lumen radius, are shown in table 1 together with 
the range of insertion loss across the beam in brackets.  
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Fig. 6. Doppler power (arbitrary scale) versus string position. Upper plot without tube, lower plot with tube.  Tube – 8mm ID, 1.6mm wall, C-Flex.  Beam axis 
displacement from tube axis (a) 0mm, (b) 0.9mm, (c) 1.8mm, (d) 2.7mm. 
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Fig. 7.  Power ratio plots normalised to a maximum of unity. Tube - 8mm ID, 1.6mm wall, C-Flex.  Beam axis displacement from tube axis (a) 0mm, (b)  
2.7mm. 
 



 
TABLE 1 

 TUBE DIMENSIONS AND INSERTION LOSS 
 I.D.(mm) Wall(mm)            Insertion loss (dB) 

Beam centred         Beam off-axis 
Rubber 7.94 1.58  9.1(0.2) 12.4(3.3) 

Thin-wall C-Flex 8.0 0.8  4.2(0.1)  5.5(1.4) 

Thick-wall C-Flex 7.94 1.58  8.4(0.9) 10.5(3.0) 

TFE-Teflon 7.98 1.01 14.3(0.4) 17.0(2.7) 

Heatshrink 12.0 0.27  4.1(2.2)  7.0(13.0) 

Perspex 10.0 1.0 10.5(2.4)       - 

The measurements were taken at the string position giving the greatest Doppler power without the tube.  The distortion of the beam by the tube may mean that 
this is not the position of greatest Doppler power with the tube in place.  Estimated error in insertion loss 1dB.  The figures in brackets give the range of inser-
tion loss across the beam.  The off-axis measurements are for a beam axis displaced by 0.67 of the tube radius. 

 
       Even though there is a significant insertion loss with the 
tube in place (Fig. 6 and Table 1), since the beam is relatively 
narrow (Fig.6) compared with the tube, the variation of loss 
across the tube is small when the beam is centred (Fig. 7a and 
Table 1). As the beam is moved towards the side of the tube 
the loss - primarily as a result of absorption in this relatively 
soft material [6]- becomes more pronounced in the part of the 
beam closer to the side of the tube (Fig. 7b and Table 1). 
    The first three tubes in Table 1 are of relatively soft mate-
rials, reasonably well impedance-matched to water [6]. The 
insertion losses for the two examples of C-Flex are approxi-
mately in the same ratio as the wall thickness as would be 
expected if the loss is dominated by absorption.  TFE-Teflon 
is less well matched and is more highly absorbing and has a 
higher insertion loss at a lower wall thickness [6].  Heat-
shrink has been included as an example of a material that has 
been used for flow phantoms since it combines a thin wall 
with structural stability. However, even with this relatively 
large diameter tube the range of insertion loss across the off-
axis beam is high, probably as a result of more complex beam 
interference effects resulting in turn from mode conversion 
and low critical angle.  The insertion loss in the case of Per-
spex for the off-axis beam was too high for measurements to 
be made. 
    Of the tubes measured the thin-walled C-Flex was clearly 
the most suitable for a Doppler flow phantom, having a low 
insertion loss and, probably more importantly, a low range of 
insertion loss across the tube.   
 

IV. CONCLUSION 

The degree to which the tube in a Doppler flow phantom can 
attenuate and distort the beam of an ultrasonic flow detector 
is important when selecting tubes for such a device. A simple 
CW Doppler flow detector may be used to determine the in-
sertion loss of the tube at  a range  of positions of the beam 
relative to the tube axis and assist in the choice of tube.  
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